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The motion of a classical test particle, which evolves deterministically in a potential field and
where at a given rate its velocity is randomized, is investigated. A path integral approach is used
to find exact solutions for the free and harmonically bound particles. Both the exact solution and
numerical solution for a nonlinear case show large deviations from the diffusion limit.
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I. INTRODUCTION

This paper discusses the model proposed by II’in and
Khasminskii (IK) [1] for a Brownian type of motion and
presents some exact solutions for it. The model considers
a one-dimensional (1D) classical test particle of a mass M
which evolves deterministically in a potential field V (z).
At a given rate o the velocity of the particle is random-
ized. The change in the velocity is due to an elastic
impact with gas particles of the mass m whose velocities
are Maxwell distributed with a given temperature 7T'.

Much work has been done for two special cases. The
first case is when the mass ratio ¢ = m/M = 1. In
this case the test particle velocity is resampled according
to the Maxwell distribution after each collision. Such
a model was used to calculate reaction rates [4-6] by
considering a particle moving in a metastable background
potential and relating the collision rate a to the pressure
of the surrounding gas. A comparison was made between
the reaction rates computed from this model and other
reaction rate theories [5,6]. A similar approach for the
case ¢ = 1 was used in the field of the plasma physics
(2,3].

This approach is also commonly used for numerical
simulations of systems with many degrees of freedom
[7-9]. In some cases the collisions follow one after the
other separated by constant time intervals [10-12]. This
regime was addressed in our paper [13] where a possibility
of slowing down the relaxation was indicated.

Another limit investigated thoroughly is the limit of
weak and frequent collisions. Under certain conditions
this limit produces diffusion approximation [1,14] which
may be treated also by means of a Langevin or equiva-
lent Fokker-Planck equation (see, e.g., Refs. [15-19]). A
widespread use of these two limits encourages us to try
and find a unifying approach and to look for exact solu-
tions for some simple cases but for arbitrary mass ratios
€.

This sort of a model for a free particle, called the
Rayleigh piston, may incorporate also (see, e.g., [20] and
references therein) a dependence of collision frequency
on the reference particle velocity which may appear to
be of importance at high enough velocity. However, II’in
and Khasminskii [1] deduced a master equation for the
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particle in a potential using the standard Kolmogorov ap-
proach and assuming a velocity independent rate of colli-
sions. The main result of [1] is a derivation of a backward
Kolmogorov equation from the master equation for the
collision process.

It is understood [16,17,19] that systems which ex-
perience rare and strong fluctuations are described by
integro-differential equations. These equations are rarely
solved. In fact, Kramers in his seminal work [21] dwells
on the validity of the diffusion approximation in order
to describe chemical reaction rates. He claims that an
approach in which the collisions with the surrounding
medium particles are rare and strong might be more ap-
propriate. Chemical collisions may serve as a microscopic
mechanism for such noise [22]. The IK mechanical model
to be considered here may serve as a simple model for
such a process.

Knessel et al. [14] have used the same model to de-
scribe chemical reaction rates, and derived a backward
Kramers-Moyal equation for this process. They then
looked for asymptotic solutions of this equation, compar-
ing these with the results of the diffusion approximation
and questioning their validity.

In the fields of chemistry and physics considerable ef-
forts have been devoted to the connection between mas-
ter equations describing Markov processes and their ap-
proximate diffusion type descriptions, i.e., by means of
a Fokker-Planck equation [16]. The master equation is
often expanded using some small parameter and trun-
cated after two terms. This procedure yields the Fokker-
Planck equation when using, for example, van Kampen’s
Q2 expansion [16]. Grabert, Hinggi, and collaborators
[23,24] and Knessel et al. [14] compared the relaxation
times computed by means of the master equation and
the Fokker-Planck equation, pointing out that the diffu-
sion approximation does not necessarily hold. Instead, it
was suggested in Refs. [23,24] to make use of an effective
Fokker-Planck equation which led to a solution similar
to that of the master equation. Additional work on ap-
proximate solutions of the master equation can be found
in Refs. [17,25].

In order to study the validity of the diffusion approxi-
mation, it is of interest to solve simple forms of the mas-
ter equation. Then it is possible to compare between the
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exact solutions and those given by the diffusion approxi-
mation. Considering a Poisson process we apply here an
integration over all possible sets of collision times and all
values of the momenta of colliding particles. This tech-
nique allows us to derive integro-differential equations for
the moments of the coordinate and momentum describ-
ing the motion of the test particle.

A forward master equation for an evolution of the joint
probability density function of the particle trajectory in
the phase space is derived. In addition, low order mo-
ments are explicitly computed describing the motion of a
free particle and a particle situated in a harmonic force
field. This is done for all values of the masses, the mean
free time between the collisions, and initial conditions.

We find the relaxation times, describing the low mo-
ments of the mechanical state of the particle. The Ein-
stein fluctuation-dissipation relation holds for all values
of the mentioned parameters, if one identifies correctly
the damping coefficient. However, the evolutions of the
mean square displacement and the kinetic energy are con-
trolled by two different times which coincide only in the
diffusion limit. It will also be shown that deviations from
the diffusion limit are not necessarily small even when the
ratio of masses of the gas and reference particles is small.
" In the last section we present some numerical results
for the motion in a nonlinear background potential field.
‘We show that the damping coefficient which appears in
the Einstein relation cannot serve as the only variable
controlling the dynamic correlation time. Rather both
the collision rate and the mass ratio must be considered.

II. MODEL

Here we consider a simple model for a system cou-
pled with a bath. Let us assume that there is a parti-
cle with the mass M moving in the potential V(z). Its
motion is described by the Newton equation of motion.
The particle may interact with a bath which is a one di-
mensional gas of other particles with the mass m. The
reference particle is elastically kicked by the gas parti-
cles whose momenta p are distributed according to the
Maxwell function. Here and below, T is the temperature
of the gas particles, measured in energy units (kg = 1).
The collisions occur at random times {tq,...,%;,...} ac-
cording to the Poisson distribution. Each elastic collision
causes a change of the momentum of the reference parti-
cle according to the equation

pT = pap” + p2b, (1)
where
M -m . 2M
u'l—M+m1 /*“2“M+m'

Here the signs — and + mark the values of the momentum
just before and after the collision. The coordinate of the
reference particle does not change. Here the duration of
the collision events is assumed to be much shorter than
any other time appearing in the problem.

Now a sequence {p;} and {t;} describing k collisions
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is considered. The deterministic equation of motion and
rule (1) give a principal possibility to find the coordi-
nate zx(t) and the momentum pg(t) of the test particle
at a time ¢ > t;. It is clear that these two quantities de-
pend on their initial values, o and pg, and the particular
choice of the sequences {5;} and {#;}.

zi(t) ({Bi}, {t:}; To,po) ,  Pr(t) ({B:}, {t:i}; 20, p0) - (2)

The mechanical state of the reference particle is charac-
terized by the coordinate and the mechanical momentum
(z,p). In addition one may consider the number n of
collisions the particle has encountered. In the usual sit-
uations this number is not measurable at a time ¢. An
example where this number may be easily recorded is
by numerical simulation of this model. After the system
has been evolving for a time ¢ and the reference particle
has been kicked many times by the gas particles, these
quantities can be predicted only statistically. Generally
z, p,and n are of physical interest, especially their low
moments and correlations between them.

Definitions

In the model described above the collision events ap-
pear as dots on the time axis. These together make the
so called [16] “random set of points” or “events” or a
“point process.” At each dot the momentum of the in-
cident particle is specified. The total time the reference
particle has been evolving is t. The dots and the mo-
menta of the incident particles are random numbers and
one has to study the following combination of stochastic
variables.

The sample space is formed by the states which are
formed in the following way: (i) a non-negative integer
s = 0,1,... describes the number of collisions during
the time ¢; (ii) for each s there exists an ordered set,
0 <ty < -+t; < tiy1 < --- < tg, of s real numbers
corresponding to the times at which the collisions occur;
(iii) a real number, —oco < p; < oo, is assigned to each
collision event, which is the momentum of the incident
gas particle.

Now the probability density over these states
Qs(t1,P1,t2,.-.,ts,Ps) is introduced which is defined in
the domain given by (ii) and (iii). We consider here the
situation when each collision is an independent event and
the corresponding momenta $ are distributed according
to the Maxwell function. Now we need a function ¢(t)dt
which gives us the average number of collisions in the
time interval (¢,¢ + dt). Then the probability density of
the states with s collisions can be presented as

Qa =QOP(ﬁl)"'P(ﬁs)"'Q(tl)"'q(ts) .

Here Qo is, on one hand, a factor which can be found
from the normalization condition

fjf[/otdn/m dﬁl---/ot'_ldt,/w dp.

s=11i=1

sz(t15ij1;t27 . -1ta)ﬁs) + QO =1 (3)
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and, on the other hand, it is obviously the probability of
the state with zero collisions.

Here we consider the processes in which the rate a of
the collisions does not change with time, i.e., g(t) = a.
Then, carrying out the integrations over the momenta p;
in Eq. (3), the normalization condition reads
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particle and depending on its coordinate z and momen-
tum p is considered. This quantity may or may not de-
pend on the time t explicitly. As for the values of the
coordinate and the momentum they must be found at
the time t. The model allows one also to consider the
dependence of this function on the number n of collisions

which has occurred during the time ¢.

In order to calculate the average value of the quantity
A one has to consider its values over states defined above.
These can be found by means of Eq. (2) so that one
obtains the set

t t t2
Qo (1 + a/ dtl + (12/ dtz/ dt]_ + .- ) = 1, (4)
0 0 0

which allows one to find that Qo = e °*. The terms
in the left hand side of Eq. (4) are readily recognized
as a Poisson distribution so that the i¢th term gives the
probability that ¢ collisions take place during the time ¢.

Now a quantity A(z,p,n): characterizing the reference
J

{AO’Al(tlaﬁla 1)h- .. aAa(tla .. 7p~i7 CRRY 7t5aﬁ373)t’ .- }

and as a result arrives at the average in the form

ed t ts oo
(A i) = AoQo+ Y ate [Cat, [Mateso [ dpe PGIANE - D). (5)
s=1 0 0 —o0

Equation (5) represents a sum over the histories where each history is defined by a set of times when the collisions
occurred and by the corresponding momenta of the incident particles. This is a generalization of the procedure
considered in our paper [13] where contrary to (5) the intervals between the collision events were assumed to be
constant.

III. EQUATION OF MOTION

The sum over the histories (5) allows one to analyze the time evolution of the average value of the quantity A. One
can use an approach similar to that used by Feynman when deriving the Schrédinger equation from the path integral
representation of quantum mechanics [26]. We have also used this technique to derive the Kramers equation [13] in
the case of constant intervals between the collisions. To do this one has to consider the function (A(z,p,n);) at two
neighboring times ¢t and t + At and calculate its derivative over time

d(A(x’p’n)t) I T (A(x’p,n)t At) - <A(mapan)t>
dt = tim, Y ' ©)

Using the definition (5) of the averaging procedure one can write that
(A(z,p,n)t+at) = A(,p,0)t+4¢Qo(t + At)
oo t+At t oo oo
# Y emewran [T g [Pan [ dpe [ apP@) P
s=1 0 0 —oo

XA(tlaﬁl tee »tmﬁa)t—kAt
= (A(z,p,n)¢) + <Q%M> At — a(A(z,p,n)) At
+a / 5P (5)(OA(, p,n)o) At + o(A)? | (7)

If one looks at the typical term of the expansion (7) as it appears in the second and the third lines one can see that At
appears in three places. That is why the linear in- At expansion of (A(z,p,n)t+a¢) contains four terms. The first one
is just the zeroth order term. There are also three first order terms. The second term is due to explicit dependence
of A(z,p,n) on time ¢t. This appears due to the evolution of the coordinate z and the mechanical momentum p with
time according to the Newton second law, after the sth collision event. This means that no collision occurs at the
time t. The third term is due to the time dependence of the normalization factor e~t. As for the fourth term, it
formally appears due to the variation of the upper limit of the integral over the time ¢,. These two last terms appear
due to the collisions which may occur just at the time ¢ and as we will see below they lead to the collision integral in
the master equation.

_ The fourth term contains the integration over the momentum 7 of the particle incident at the time ¢. The operator
O arranges the averaging of the quantity A in such a way that the sth collision occurs just at the time ¢. It is defined
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as

(OA(z,p,n)) = exp(—at)A(t, = t,5,1):

oo t e o)
+exp(—at)z:a’"1/ dt,_1/ dps—1P(Bs—1) - Alt1,...,ts
8=2 o —oo

In other words, one may say that the operator O adds a
collision at the time t.

Collecting the first order terms in At, one reaches the
equation

d(A(a(:l,tp,n)) _ <8A(:;’tp, n)> — a{A(z, p,n))

+a [~ dP@OAE ). O

The last two terms in the right hand side of Eq. (9)
cancel each other, if the quantity A does not depend on
the momentum and the number of collisions explicitly.
In order to verify this one can first integrate over p in
the last term of Eq. (9) and then check that

(OA(2):) = (A(2)e)- (10)

This cancellation comes from the fact that the reference
particle coordinate is not changed by the last collision
and the value of the momentum p at the time t, corre-
sponding to the last collision, is in this case irrelevant.
A simple example, A(z,p,n) = n, is now considered.
According to the definition of the operator O one has

(On) = (n 4+ 1). Then Eq. (9) reads
d{n) _ -
ek —a(n) +a{n+1)=a, (11)

whose solution is (n) = at. Similar simple calculations
yield (n?) = (at)? + at. These are the well known solu-
tions for the Poisson process which is considered here.

Master equation

As a specific and important example the characteristic
function defined as C(h,l; t|zo,po) = (e****+iP) is consid-
ered. The operator O (8) acts at the time ¢ and changes
the momentum of the reference particle according to (1).
As a result one has

<O"eih:p+z'lp) — (eihz+ilu1p+ilpzﬁ).

Now using the equation of motion (9) the time derivative
of the characteristic function reads

d(eihz+ilp> Zh <

zhm+zlp the+ilp
— ) + il(f ()eih=tp)

oo N
—a(ethetiley 4 a/ _@___6—5%.27
_ 2amT

Xeiluzﬁ<eihz+ilu1p>, (12)

where f(z) is the external force acting on the reference

= tvﬁ? s)t~ (8)

[
particle.

It is convenient to introduce the Fourier transform of
the characteristic function

e dhdl
u(z,Paﬂmo,Po / / (2 )2

-—zl:n thp , (13)

C(h,1;t|zo, po)

which as we see below has a meaning of the probability
density. The derivative over time in the left hand side of
Eq. (12) does not act on the parameters h and ! of the
characteristic function. It must not also act on z and p
in the Fourier transformed characteristic function (13).
Therefore the Fourier transformed equation (12) reads

Ou(zx,p,t) _  p Ou(z,p,t) Ou(z, p,t)
ot M oz f(@) dp
o [ e (=252 1]
xP(p)dp , (14)

with the partial time derivative in the left hand side.

This equation contains the integral term which can be
interpreted as a collision integral typical for master equa-
tions. Really the first term in the integrand is propor-
tional to u(z,p,t), i.e., to the probability that at the
time t the reference particle occupies the point (z,p) of
the phase space. It is multiplied by the function P($) so
that this product gives the probability that this particle
is kicked by a gas particle with the momentum p and
as a result the reference particle leaves the point (z,p)
in the phase space. The second term of the subintegrand
describes the reversed process at which the reference par-
ticle with a momentum py is kicked in such a way that
its momentum converts into p.

To see this let us omit the = dependence which is not
of importance here and present the rate of the reversed
process in the form of the integral

0‘/ de/ dpsu(ps)P(Ps)d(p — m1ps — p2Pf)
(15)

where Py is the momentum of the gas particle before the
collision in the reversed process. The § function in the
integral (15) reflects the fact that the variables ps and p¢
are not independent. They are connected by the condi-
tions of type (1), since we demand that the momentum
of the reference particle is p after this reversed process.
Integrating over py the integral (15) is in the form as it
appears in Eq. (14).

It can also be checked by direct substitution that the
Maxwell-Boltzmann distribution is a stationary solution
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of Eq. (14). Equation (14) is a forward master equation
and differs in this respect from that of II’in and Khas-
minskii [1], who considered a backward equation.

In the special case when the mass of the reference par-
ticle is equal to the mass of the gas particle (i.e., uy =0,
p2 = 1) one can suspect a divergence in Eq. (14). How-
ever, this divergence does not show up in Eq. (12). As-
suming in it g3 = 0 and carrying out the Fourier trans-
formation (13) one arrives at the equation

du(z,p,t) _ _ p Ou(z,p,t) —-f(:c)aU(X’ P,t)

at M~ oz ap
- yDot) + —/—=
au(®,p,?) 2TrMT
p2
X exp [—M] ’LL(IB, t) 5 (16)

in which

a(e,t) = [ GremhC(h,1 = itlao, po)

—0oo

is just the probability density of the coordinate of the
particle. The last term in Eq. (16) appears in such a
form due to the fact that due to equal masses, the parti-
cles exchange momenta at each collision and, hence, one
collision is enough to yield the Maxwell distribution for
the reference particle momentum.

Equation (14) is written for a finite rate a of the col-
lisions so that the average interval between the collisions
is also finite. Now we are going to consider the diffusion
limit when the collisions increase and @ — oo. In order
to avoid a highly overdamped motion, the limit ¢ — 0
must be simultaneously taken under the condition that
ae remains constant. This means that the number of
collisions per unit time increases while each collision be-
comes weaker. This limit corresponds to the Langevin
limit considered in our paper [13] for a constant interval
between the collisions.

Now the equalities p3 ~ 1 — 2¢, pp ~ 2(1 —¢€) are used
and Eq. (14) becomes

Ou . pOu Ou
o~ mee @5
+a/ [(1+ 2e)u(z,p + y,t) — u(z,p, t)]
X P(p)dp . (17)

Here y = 2ep — 2(1 + €)p may be taken as a small pa-
rameter in the integral, due to the fact that the Gaussian
integration has a width MeT — 0. Expanding over y and
integrating over p one arrives at the Kramers equation

O(pu) . 0%u
8p +ﬂdszM apz ’
(18)

in which the friction coefficient, for this diffusion limit,

ou p Ou ou
= - f($)5; + Bais

. Moz

Baiy = lim 2ea, (19)
e, 10
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is explicitly connected with the microscopic parameters
of the model.

IV. FREE PARTICLE

This section will consider the problem of motion of a
reference particle in the absence of any external field so
that it experiences only the collisions with gas particles.
Such a reference particle will be called free. Equation
of motion (9) allows one to obtain the following set of
equations, for the first and second order moments of the
coordinate £ and momentum p of the reference particle:

() 05 000 \ (z)
(p) 0-3 0 0 O (p)
2l @ | =] o0 B0 o || @
@ oo 2o ||
(p?) (p?)
0 0 0 0 —2v
( 0
0
+ 0 : (20)
0
2yMT
Here

B=(1-pa (21)

These equations are obtained in the following way. Con-
sidering, for example, the equation of motion for (z) one
has to take into account the cancellation (10) and the

trivial fact that
dz 1
<E> = M(P)-

In order to get the equation of motion for (p) one has to
make use of Eq. (1) and obtain that

(Op) = n1(p).

The equations of motion for second order moments are
obtained in a similar way.

It is interesting to note that two relaxation parameters
connected by the condition

2y =(1+m)B (22)

appear in the equations of motion (20). These two con-
stants appear in the solutions of Egs. (20) which read
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(p) = poe™?* , (23a)
Po —Bt
(@) = 3751 ¢ ), (23b)
(p?) = pie™"* + MT (1—e2t) , (23c)

p) = I _ Bt ps — MT e—Bt _ o—2vt
(o) = F0— )+ (FEE) )
(23d)
oTt 2T  _g,
<(D2> = m Mﬂz (6 Bt _ 1)
P —MT [1  _5p v 1o __p
+2-"’-’2(27—@ [27( 1)+ﬁ(1 )]
(23e)

Here zo = 0.
Equations (23a) and (23b) can be formally interpreted
as solutions of the equation

v =—Pv (24)

for the average velocity of the reference particle assuming
initial coordinate ¢ = 0 and momentum po. This means
that the parameter 3 must be treated as the friction co-
efficient. The same parameter 3 determines the limiting
behavior at ¢t — oo of Eq. (23e) for the mean square
displacement which allows one to find the diffusion coef-
ficient

T

D=“Ju,—ﬂ

(25)
satisfying the Einstein relation. This relation holds for all
mass ratios €. Here we see an important difference from
the result of our paper [13] where deviations from the Ein-
stein relations are found for finite ratios of masses. It is
clearly connected with the fact that contrary to the Pois-
son process studied here the paper [13] considers strong
time correlation between the collision events.

Equation (23c) shows that the mean square momen-
tum (proportional to the kinetic energy of the reference
particle) tends at t — oo, as expected, to its equilibrium
value MT. It is emphasized that this statement appears
as a result of the calculations rather than as an ad hoc
assumption. However, considering the relaxation of the
mean square momentum one surprisingly finds that it is
characterized by another constant . According to Eq.
(22) v < B since pu; < 1. The equality v = § holds in the
Langevin limit (19). Only then do the solutions (23a)-
(23e) become identical to the solutions of the Langevin
equation of a free particle which can be found in various
textbooks (see, e.g., [16-18]).

It is often assumed (see, e.g., [15]) that we deal with
an ensemble of the test particles whose initial states are
characterized by equilibrium distribution. In this case
averaging of Egs. (23a)—(23e) produces the standard re-

sults of the Langevin equation. However, one can easily
imagine a situation when the initial distribution of the
test particle is rather far from equilibrium and devia-
tions of the relaxation kinetics from that of the Langevin
type must be observed.

The solution presented here does not contain any re-
striction on the mass ratio e = m/M. We may, for ex-
ample, consider the case of equal masses M = m. Then

1 =0, 2y=08=a.
This means that the relaxation times are extremely rapid
and close to the microscopic time scale a~!. This rapid
relaxation is obviously connected with the fact that col-
liding particles exchange momenta and the reference par-
ticle “forgets” its initial momentum after the first colli-
sion. Such a strong condition is certainly due to our
one dimensional model. Considering a multidimensional
problem will result in slower relaxation.

One may consider also the extreme situation when the
mass of the gas particles becomes large, ¢ > 1. This
case is very far from conventional theories of Brownian
motion, where this ratio is usually assumed to be small.
The motion resembles now random flights [15]. One has
in this case

p = =1, 8-> 2a, v—0.

In this limit each collision changes the direction of the
reference particle flight keeping the absolute value of the
momentum constant. Therefore the average momentum
relaxes to its equilibrium zero value rather rapidly with
the characteristic time oo~! the averaged squared momen-
tum and, hence, kinetic energy of the reference particle
relaxes extremely slowly.

For a large but finite value of the mass ratio € one can
find a time period when vyt < 1 while Bt > 1. Then the
mean square displacement takes the form

2p3t
2y _ 0
<(E > - Mzﬁ’

meaning a strong violation of the Einstein relation. The
effective diffusion coefficient measured in this time pe-
riod,

_ P}
=35

depends on the initial momentum of the particle rather
than on the temperature. The conventional Einstein re-
lation recovers only after a long time ¢ > v~!. Only then
is the information on the initial conditions lost and the
equilibrium achieved.

Characteristic function
of the mechanical momentum

This subsection considers the characteristic function of
the mechanical momentum defined as

C(l,t; po) = (exp(ilp))-
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The equation of motion for this function can be obtained
from Eq. (12) by assuming that f(z) =0 and h =0,

. 2,,2
———dc(l‘;:’p") = —aC(l,t;po) + aexp <———~l ﬂzmT)

xC(lpy,t;po) - (26)

On the other hand, Eq. (5) allows one to represent the
characteristic function as a sum

C(p,t;po) = Y C(p,t;po)s (27

where the partial characteristic function
C(p,t;po)s = ((expilp|n = s)) (28)

assumes that exactly s collisions have occurred during
the time t. .

Using the properties of the operator O in Eq. (9) the
equations of motion for these partial characteristic func-
tions become

dC(l,t;po)s
—22—== = —aC(l,t;po)s
dt

—lpimT

+a exp ( 2

) C(p1l,t;p0)s—1- (29)

Solutions of Egs. (29) are looked for in the factorized
form

C(l7 t;pO)a = fa(t)gs(l) exp(—at) ) (30)
which on substituting into Eq. (29) produces
fs = fs—1- (31)

Keeping in mind the obvious initial condition f,(t = 0) =

850 the solution of Eq. (29) is

(at)®
s!

fo(t) =

. (32)

The problem now is to find the function g,(I). One
can do it by comparing Eq. (27) with the solution of the
similar problem found in our paper [13]. First, notice
that the time dependent part of (30)

Js(t) exp(—at) (33)

is just the Poisson distribution function describing the
probability that s collisions have occurred by the time
t. In the case of the constant intervals, 79, between the
collisions this function should be substituted by the prob-
ability of a process with s collisions. This is given by the
Kronecker function d,,, where s; = [t/7o] ([] is the inte-
ger part). Then one expects that Eq. (27) will convert
into the corresponding part of Eq. (13) of the Ref. [13].
For this to be true the equation

Ma-a] e

gs(l) = exp [ilpoui -

must hold.
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As a result the solution of Eq. (26) becomes

S . MT ,
Cl,t;po) = ,§=o: exp [7'1111?0 - ‘2—l2(1 - l‘% )
s,—at
(o)™

s!

(35)

One can easily find the behavior of the function (35)
in the large time limit at — oco. Really the Poisson
distribution (33) as a function of the number of collisions
s for a large value of at has a sharp maximum around
so = at/e > 1. Then one can use the fact that u§ — 0
for large values of s and obtain that Eq. (35) becomes

C(l,t; po) = exp [-%zlz] (36)

in the limit of large times. One can easily understand
(see, e.g., [13]) that this limit means that the system
arrives at equilibrium.

V. HARMONIC OSCILLATOR

Equations of motion for a particle situated in the har-
monic potential are obtained in a fashion similar to that
used for the free particle. The only difference is that now
the force term

f(z) = —Mw?z

must be taken into account.

(#) 0 @w 0 0 0 (i)\
(p) -w - 0 0 0 (p)
% (@p) | = 0 0 -8 -w w (Zp)

(%2) 0 0 20 0 0 (#2)
(P?) 0 0 —2w 0 -2y P?)

0

0

+ 0 , (37)
0
2YMT )

where £ = Mwz. It is important for the analysis pre-
sented in this section that the force f(z) is linear in z.
Only in this case are the equations for the moments of
different orders decoupled.

To begin with the stationary solutions of Eqs. (37) are
readily found in the form

<5:z>at = <p2>st = MT, <m)at = <p>st = (xp>st = 0.

(38)
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We notice that the relaxation coefficients which enter the
solution for the free particle, also determine the relax-
ation in the harmonic field. When the diffusion limit
is approached, the equations for the five moments are
identical to the equations for the moments, which can be
derived directly from Kramers equation (18). Solutions
for this case can be found in [15]. For (z) and (p), the
equations of motion are identical to those of the diffu-
sion limit, for all mass ratios and mean times between
the collision events. Only one friction parameter, 3, is
important for these moments. As usual, one arrives at
the standard condition that for 8 < 2w the relaxation of
these moments is underdamped and it is overdamped in
the opposite case.

Time dependence of the three second order moments
generally differs from that in the diffusion limit. The
motion is characterized by two parameters 8 and v which
produce three relaxation rates which are the eigenvalues
of the 3 x 3 matrix in the lower right corner of the matrix
(37). These eigenvalues are solutions of the third order
equation

As + (IIAZ + azA + asz = 0 y (39)
where

a1 =2y+08, az=2B7+4w’, az=4w’y. (40)
Using the standard equations (see, e.g., [27]) for solutions
of cubic equations three quantities, @, R, and G, are

defined as

2
_3az —aj

Q_g

_ 9aja; — 27a3 — 2a3
N 54 ’

, R
(41)
G =Q®+ R2.

Then three types of solutions can be found: (i) if
G > 0, then one root is real, two are complex conju-
gate; (ii) if G = 0 all roots are real, and at least two of
them are equal; and (iii) if G < 0 all roots are real and
unequal. They correspond to an underdamped motion
(i) when oscillations of the solution exist and to an over-
damped motion (iii) when only pure attenuation can be
observed. The transition between these two regimes is
determined by the condition (ii) and in the general case
differs from the similar condition obtained for the first
order moments. Using definitions (40) the quantity G
becomes

_ (=P + 298 - 8% +1207%)°
- 729
LB= 1*(@? + 298 — 8% +18°)%
729

G

(42)

In the diffusion limit, when v = 3, the type of motion
is determined by the much simpler expression

_ (_ﬂz +4w2)3

G 27

(43)

which yields the same criterion for the well known under-
damped and overdamped motion of the oscillator, which
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experiences a linear friction force (see, e.g., [15]) as ob-
tained above for the first order moments. However, it is
important to emphasize that, contrary to the first order
moments for which this criterion is of a general character,
the higher order moments obey this criterion only in the
diffusion limit.

One can consider also small deviations from the diffu-
sion limit when € <« 1. Then expanding the function G
with respect to this small parameter one arrives at the
critical value

(44)

marking the transition from the underdamped to over-
damped type of motion and increasing with increasing
€.

Two cases are considered far from the diffusion limit.
First, if the masses of the reference and gas particles are
identical, i.e., 8 = 2+, one gets

_ w?(28* — 134%w? + 64w?)

¢ 27

(45)

This means that G > 0 for all values of 8 and w and we
deal only with the underdamped motions. In the limit
M > m when v =0

_ 4w*(—p% + 16w?)

G 27

Then transition from an underdamped G > 0 to over-
damped G < 0 motion is again possible at 8./w = 4.

L PR PR S U R S R S S S P Y "
o 4 10 20 30 40 50
B/w

FIG. 1. Phase plane for G(0,8/w). Areas of underdamped,
G > 0, and overdamped, G < 0, motions are indicated. Two
separatrices (solid lines) converge to the line § = 1/2 (dashed
line) in the limit 8 — oco.
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-0.5

-1
Aw L

FIG. 2. A1/w versus B/w exhibited in two graphs [(a) and
(b)] for different values of the mass ratio e. The quantity A,
is real for all values of the parameters v, 8, w.

A general plot of the behavior of the parameter G as
the function of 8 and

'y_l

B 1+e¢

is shown in Fig. 1. Two curves corresponding to
G(0,B8) = 0 in this plot separate the areas of the un-
derdamped and overdamped types of motion. It is inter-
esting to note that the dashed line § = 1/2 (M = m) lies
completely in the underdamped domain. Two separatri-
ces converge to this line so that at 8 — oo there remains
only one point lying on this line with the underdamped

type of motion while all the other values of 8 # 1/2 yield
overdamped motions.

These conclusions can be made directly from Eq. (42).
At B — oo its leading term in

G = A(6)8° + B(6)8* + 0(8%) (46)
is proportional to 3% and has the negative coefficient

6%(26 —1)?

Al) =——7

for all values of §. The only important exclusion is the
point @ = 1/2 where this coeflicient becomes zero and the
sign is determined by the term proportional to 3% which
is always positive, e.g., (45).

Now the relaxation times determined by three solu-
tions of the cubic equation (39) are considered (see, e.g.,
in [27]). One of these solutions is always real while two
other solutions can be, depending on the sign of G, either
both real or complex conjugate. Their graphical repre-
sentation can be viewed in Figs. 2-5. For mass ratio
(e < 1) the solutions can be expanded with respect to
this small parameter. Considering the solution which is
always real one gets

w?

— 2
Al = —ﬂ+€ﬁm + 0(52) for 0 < 4w* — ﬂz

(47a)

and

Re[),/w]

B/w

FIG. 3. Re)\;/w versus 3/w for different mass ratios .
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FIG. 4. ImAz/w versus B/w for different mass ratios ¢.
ImAz — -—Im/\a.

for
0 < (% — 4w’
For A, we get
2&)2 _ ﬁZ 2
ReAz = —ﬁ+€ﬁm +O(E ) y

(47¢)

2
Im)\; = v/4w?2 — 32 (1 + szﬂ—_ﬁz) + o(£?)

for
0 < 4w?® — 32,

and

e (102 22)
-V B2 — 4w? (1 +e ik ) + o(e?) (47d)
4w? — 32

for

8% — 4w? > 0.

A3z is determined by
Ag = —Al - Az - ﬁ (3 - 26) + 0(62).

These expressions show that the expansion can hardly
be carried out near the point 28 = w where in the
Langevin limit the transition from the overdamped to
underdamped motion takes place. The small parameter
€ is divided by the quantity 4w? — ($? which becomes

g7 T
x B=1.856
_ B=0.232
. B=0.058
0.5 - i
=
Il
0._
J
o b v 0 e
0 2 4 8 8 10 12

t

FIG. 5. The correlation function Z(t) versus time, for dif-
ferent values of 3. Here the mean time between collisions is
(1) 9.85 for B = 0.058, (2) 2.46 for 8 = 0.232, and (3) 0.31
when 3 = 1.856.

small near this point. The solution A; is plotted in Fig.
2, showing that its absolute value passes the maximum
near this point and is extremely sensitive even to small
variations of the mass ratio €.

As shown above, G > 0 for all values of the parameter
B if masses of the references and gas particles are equal.
The relaxation parameters in this limit are

ﬁli_}n;o Me=1)=0, (48a)
lim Ay 3(e =1) = —B+iv2w . (48b)

B—ro0

The motion is now strongly damped and does not re-
lax — one of the eigenvalues is zero. Formally it is
not overdamped since oscillations are possible, however,
these can hardly be observed since their period 27 /w is
much smaller than the characteristic relaxation time 1/3
associated with the oscillations.

Finally the results of this section are compared with
those of Ref. [13] where strong correlation between the
kicks is assumed. They follow one after another with
the time interval 79. A very long relaxation time is then
found in [13] when the frequency of the harmonic os-
cillator is connected by sort of a resonance condition
To = 7n/w (n is an integer) with this time interval. In
the case of the Poisson process considered here when the
kicks are completely not correlated this effect is smeared
out and does not show up in the relaxation process.

VI. NUMERICAL SIMULATIONS

Simulations of Brownian type of motion for the test
particle situated in a nonharmonic background potential
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field are often carried out [28-30]. In many cases it is
done using the Langevin approach which is based on the
equation

dV(z)
dz

Mi = —Bqifx — +£(1), (49)

where the random force satisfies the standard conditions
(£(8)) = 0 and (E())E(H)) = 28assTS(t — t').

The IK model is used for numerical simulations, but, as
far as we know, only for the mass ratio e = 1. Both meth-
ods produce the same stationary Maxwell-Boltzmann dis-
tribution in the limit of large times, but, as will be shown
below, the dynamics can differ considerably.

The double well potential (DWP)

z*  z?

Vie)=7-3

is chosen to stand for the background potential. The tem-
perature of the system of the bath particles is 7' = 1. The
deterministic evolution of the test particle in the DWP
is obtained by solving numerically the Newton equation
of motion by means of the fourth order Runge-Kutta
method. The time step is chosen as dt = 0.01 and, as
we have checked, the results are not sensitive to this par-
ticular choice. Poisson distributed times between colli-
sions and normally distributed bath particle momenta
are achieved by using algorithms [31]. To simulate the
Langevin equation the algorithm given by [30] [see Eq.
(7.5.5)] is applied. The potential V(z) and the parame-
ters T, dt coincide with those chosen for the IK simula-
tion.

It is first of all checked that the two algorithms produce
samples which agree well with the Maxwell-Boltzmann
distribution. For example, (z?) is calculated by averaging
over 50000 independent sample points. This is done for
all mass ratios and collision rates to be considered in
what follows and in simulation of the Langevin equation
as well.

Calculating the Boltzmann averaged (z2); the ratio

2
0.995 < & < 1.008
(@)en

indicates an excellent equilibration of the system in the
course of the simulation process. We have also produced
histograms of the stationary distributions by both sim-
ulation procedures which agree well with that produced
by the Boltzmann distribution.

Turning now to dynamical properties the correlation
time

oo
toor = / S(t)dt (50)
0
characterizing the decay of the correlation function

PNCIOEO)

(x2)en
is calculated. Relaxation patterns for different mass ra-
tios € and different rates o will be discussed below. As
shown in Egs. (18), (19) the limit € = 0 and o — oo for
a constant B4y should produce the same results as those

obtained directly from the Langevin equation.

To calculate the correlation function 50000 indepen-
dent realizations are used. Each realization is sampled
every 0.2 time units. The correlation time t.,,. is then
obtained by means of a numerical integration, the oo in
(50) being chosen to be 60 time units, which is much
larger than the relaxation time of our problem. Dealing
with a harmonic oscillator, one can easily get the aver-
age coordinate (z(t)) from Eq. (37). The correlation
function is obtained by multiplying this by the randomly
distributed initial coordinate z(0) and averaging over its
values. As for the correlation time it is readily obtained
in the form

B
teor = F, (51)

where (8 is defined by Eq. (21). This result is used
to check our numerical procedure. For example, when
€ = 0.2 and w = 1 the correlation time t;,., is found
numerically for five values of 3 in the range between 0.25
and 4.0. Then the average ratio tcw,nwz/ﬂ of the nu-
merical to theoretical (51) values of the correlation times
appears to be 0.998 with the variance 0.032.

The temperature is chosen to be rather high so that
AE/T = 0.25, where AF is the energy barrier the parti-
cle has to traverse when crossing from one local minimum
to the other. This means that we are going to consider
here shallow wells as in Ref. [32] rather than the usually
addressed problem of deep wells or large barriers (see,
e.g., [4]).

We now turn to a discussion of our numerical results.
Figure 5 shows the time dependences of the correlation
function for three different values of the damping coeffi-
cient 8. For all cases shown the mass ratio was ¢ = 0.4
and only the rate o was varied. The correlation func-
tion approaches zero nonmonotonically when (3 is small
enough, which may be compared with the underdamped
relaxation of a harmonic oscillator. The values of 3 are
chosen close to the averaged temperature dependent fre-
quency of the background potential

wy= (-T2

which gives a rough estimate on the location of the transi-
tion from the underdamped to overdamped motion shown
in Fig. 5.

However, contrary to the harmonic oscillator or free
particle motion the damping coefficient 3 alone is not suf-
ficient and does not control the relaxation in a nonlinear
case completely. Rather both € and «a separately must be
considered as illustrated in Fig. 6. Results of four simu-
lations are shown. The IK simulation was carried out for
three different mass ratios and an additional simulation
used the Langevin approach. One sees that only for the
large 3 values (overdamped relaxation) do the results of
the four simulations nearly coincide. When the motion
is underdamped (small values of 3) the correlation times
differ dramatically for different mass ratios and decrease
with them. The Langevin results corresponding to the
limit € — 0 are always the lowest.
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FIG. 6. A In-In plot of the t.o- as a function of 3. For the
data presented, the averaged time between collisions (inverse
collision rate) gets its maximal value of 17.23 for the strong
collision limit € = 1 and for 8 = 0.059. The minimum of this
variable is 0.09 for € = 0.2 and 8 = 3.71.

The correlation time is a nonmonotonic function of 3
with a minimum whose position depends on the mass ra-
tio (see Fig. 6). Large values of the correlation times in
the highly overdamped or underdamped cases are con-
nected with the fact that the particle may be trapped at
a local minimum of the background potential and stays
there for a relatively long time. This behavior is found
for both the IK and the Langevin simulations.

In many cases the aim of a stochastic simulation is
to produce uncorrelated samples obeying the Maxwell-
Boltzmann statistics. Even though the correlation time
gets its minimal value for the Langevin simulation this
does not mean that this approach is the most efficient.
One must remember that for the Langevin algorithm a
random number is generated every step dt while in the IK
approach two random numbers are produced only every
1/adt time steps (on average). As a result the latter
approach may require less computer time.

Considering a finite number of realizations (50 000) is
a limitation. In order to estimate the error additional
simulations were carried out. For four cases we calculated
seven data points instead of one. Each data point has
been computed using different random numbers. For the
case of 3 = 0.116 and ¢ = 0.2 (¢ = 0.4) we found the
averaged correlation time teor = 1.751 (tcor = 2.319) and
variance 0.048 (0.059). When 8 = 1.85 and ¢ = 0.2
(e = 0.4) we found t.or = 2.594 (tcor = 2.646) and the
variance 0.074 (0.063).

As a final remark, Fig. 7 shows the correlation func-
tions for B = 0.232 and different mass ratios. One sees
that for short times t the correlation functions coincide.

» Langevin
x €=0.2

Ao €=1.0

0.5 - -

(t)

L " s " 1 L " s L 1 " L L L
0 5 10 15
t

FIG. 7. The correlation function vs time. For all the cases
shown B = 0.232. The correlation time calculated from these
functions with (50) is (1) 1.96 for ¢ = 1.0, (2) 1.31 for € = 0.2,
and (3) 1.04 for the Langevin simulation. Notice that for small
t the correlation functions practically coincide.

Hence the differences between the correlation times are
caused by the behavior of the correlation functions at
long times.

VII. CONCLUSIONS

This paper presents both exact and numerical solutions
of the IK model for a Brownian type of motion. In this
model the collisions with the particles constituting the
surrounding gas may be characterized by an arbitrary
rate and strength. Similarly to our previous paper [13]
an approach based on summing over histories is applied.

Standard results of the conventional theory of the
Brownian motion are obtained in the diffusion limit,
when the gas particle mass tends to zero, while the fre-
quency of the collisions tends simultaneously to infinity.
For example, Kramers equation is deduced. However, we
are able also to analyze the situations when these param-
eters are finite and deviations from the standard results
can be expected. One of the interesting observations of
this study is that deviations from the diffusion limit are
not necessarily small even if the mass ratio € is small.
It may happen in the case of a harmonic oscillator near
the point 23 = w where in the diffusion limit the transi-
tion from the underdamped to overdamped type of mo-
tion takes place. A nonanalytical behavior of the critical
value (3, as the function of the mass ratio ¢ [see Eq. (44)]
is also characteristic of this point.

An analysis far from the diffusion limit (the mass ratio
€ of the reference to gas particles is finite) is also carried
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out. It is found, for example, that the relaxation of the
energy fluctuations of a free particle and its deceleration
are governed by different coefficients. Considering the ra-
tio between the relaxation coefficient 8 of the first order
moments and the diffusion coefficient D produced from
the large time limit of the mean square displacement the
Einstein relation (25) is obtained which holds for any
value of €. Therefore one sees that the deviations from
the Einstein relation found in [13] are smeared out by the
fluctuations of the time intervals between the collisions
in the Poisson process. However, the second coeflicient,
v, controlling the kinetic energy relaxation, does not sat-
isfy the Einstein relation and the deviation can be rather
large if £ is not small.

For a fixed value of 3 the second relaxation coefficient
v = B/(1 + €) gets its maximal value when ¢ — 0. A
similar phenomenon was also found for a nonlinear case
investigated numerically. Our data points (when consid-
ering the underdamped case) show that the correlation

time at the diffusion limit is shorter than that found far
from this limit.

The results presented in this paper may be of impor-
tance for numerical simulations of a system in contact
with a heat bath. When doing such simulations the col-
lisions are sometimes chosen to follow one after the other
with a constant interval of time elapsing between collision
events. In [13] we demonstrated that such a choice may
lead to slowing down the relaxation. As shown here, this
effect does not appear when choosing the time intervals
between the collisions from a Poisson distribution.
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